Federal Communications Commission used. Measurements are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth. If the resolution bandwidth is approximately equal to the measurement bandwidth, and much less than the emission bandwidth of the equipment under test, the measured results shall be corrected to account for any difference between the resolution bandwidth of the test instrument and its actual noise bandwidth (6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less. Subpart F—Illtra-Wideband ## Subpart F—Ultra-Wideband Operation Source: $67 \ FR \ 34856$, May 16, 2002, unless otherwise noted. ## §15.501 Scope. This subpart sets out the regulations for unlicensed ultra-wideband transmission systems. ## § 15.503 Definitions. - (a) UWB bandwidth. For the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated f_H and the lower boundary is designated f_L . The frequency at which the highest radiated emission occurs is designated f_M . - (b) Center frequency. The center frequency, f_C , equals $(f_H + f_L)/2$. - (c) Fractional bandwidth. The fractional bandwidth equals $2(f_H-f_L)/(f_H+f_L)$. - (d) *Ultra-wideband (UWB) transmitter.* An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth. - (e) Imaging system. A general category consisting of ground penetrating radar systems, medical imaging systems, wall imaging systems through-wall imaging systems and surveillance systems. As used in this subpart, imaging systems do not include systems designed to detect the location of tags or systems used to transfer voice or data information. - (f) Ground penetrating radar (GPR) system. A field disturbance sensor that is designed to operate only when in contact with, or within one meter of, the ground for the purpose of detecting or obtaining the images of buried objects or determining the physical properties within the ground. The energy from the GPR is intentionally directed down into the ground for this purpose. - (g) Medical imaging system. A field disturbance sensor that is designed to detect the location or movement of objects within the body of a person or animal. - (h) Wall imaging system. A field disturbance sensor that is designed to detect the location of objects contained within a "wall" or to determine the physical properties within the "wall." The ''wall'' is a concrete structure, the side of a bridge, the wall of a mine or another physical structure that is dense enough and thick enough to absorb the majority of the signal transmitted by the imaging system. This category of equipment does not include products such as "stud locators" that are designed to locate objects behind gypsum, plaster or similar walls that are not capable of absorbing the transmitted signal. - (i) Through-wall imaging system. A field disturbance sensor that is designed to detect the location or movement of persons or objects that are located on the other side of an opaque structure such as a wall or a ceiling. This category of equipment may include products such as "stud locators" that are designed to locate objects behind gypsum, plaster or similar walls that are not thick enough or dense enough to absorb the transmitted signal. - (j) Surveillance system. A field disturbance sensor used to establish a stationary RF perimeter field that is used